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Computer simulations are performed for vertex models which are coarse-grained 
models for dynamical cellular patterns in two dimensions. By simulating large 
systems, we obtain conclusive evidence of scaling behavior, that is, a power law 
for the growth of the average cell size and the scaling properties for the distribu- 
tion functions of edge number and size of cells. Several versions of the vertex 
models are obtained by making some approximations for the equation of 
motion of a vertex, and we compare the statistical properties of the patterns in 
the scaling regime. 
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1. I N T R O D U C T I O N  

We invest igate the scaling behav ior  in two-d imens iona l  doma in  growth.  
We consider  the coarsening  of  r a n d o m  cellular  systems, such as 
two-d imens iona l  g r a i n  aggregates  a n d  two-d imens iona l  soap  froths. The 
me thod  of descr ip t ion  and  the evolu t ion  laws of such dynamica l  cel lular  
pa t te rns  are still poor ly  unders tood .  M a n y  previous  works  suggest scaling 
behavior ,  that  is, such pa t te rns  develop in a self-similar way at  long times, 
dur ing  which the average cell size grows as a power  law in time, the 
d is t r ibu t ion  funct ion of cell sizes has the scal ing p roper ty  with the average 
cell size and the d i s t r ibu t ion  funct ion of the number  of edges of a cell 
independen t  of  time. 
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Many experimental works on grain aggregates have yielded no con- 
clusive evidence for scaling behavior. In those systems, many secondary 
effects affect the dynamics of cellular patterns and yield a variety of results. 
On the other hand, recent experiments (1'2/in two-dimensional soap froths 
have shown definitive evidence of the existence of scaling behavior for the 
first time. 

Although many computer simulations were carried out on the domain 
growth problem, there was no convincing proof of the scaling behavior. It 
requires a large enough number of cells and a long enough simulation time 
to prove definitely the existence of scaling behavior by computer simulation. 
The extensively studied Potts model (3) and the curvature-driven model (4~ 
are not efficient enough for this purpose, since their simulation models are 
too detailed and require large computer memory and the long CPU time. 

Recently Beenakker has overcome the difficulty mentioned above by 
reducing the number of variables which describe the cells/5) He describes 
a cell in terms of two variables, its area and number of edges. This is a 
great reduction in the number of variables compared with the detailed 
models mentioned above. Correlations between neighboring cells are also 
included. The area of each cell varies according to the von Neumann- 
Mullins equation. When the area of a cell vanishes, a topological change 
takes place. This model permitted the computer simulation of large systems 
(about 10 5 cells initially) with long coarsening times and demonstrated the 
existence of scaling behavior in a random cellular system. 

Beenakker's model, however, is not deterministic, because he invoked 
a probabilistic method for reconnecting cell edges after the cell annihilation 
in the elementary process of topological change. This is inevitable, given 
the lack of information on the edge of each cell in this model. In addition, 
this lack of information obliged him to neglect the recombination process, 
the so-called "Tl-process," which is another kind of elementary process of 
topological change. This approximation had an effect on the distribution 
function of the number of edges of a cell, which largely deviates from the 
experimental result observed recently in two-dimensional soap froths. (21 As 
the von Neumann-Mullins equation shows, the number of edges of a cell 
governs the time evolution of its area. This suggests that the way of recon- 
necting cell edges in the two elementary processes of topological change 
plays an essential role in the dynamics of cellular patterns and that it 
should be determined according to a deterministic rule which takes local 
environments of individual cells into account. 

In the present paper we present details of our computer simulation 
studies of the scaling behavior of the domain growth comprehensively for 
the vertex model of two-dimensional domain growth which has been 
developed recently. (6-9) The vertex model is a corse-grained model of 
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dynamical cellular patterns in two dimensions which are expressed in terms 
of the coarse-grained vertices (intersections of cell boundaries) and 
coarse-grained straight cell boundaries. The coarse graining involves some 
temporal and spatial averages. Hence this model has poorer temporal and 
spatial resolutions than the original system and works if we are only 
interested in the variations of cellular patterns over time and distance scales 
greater than the resolution of the model. In fact, we are concerned with 
statistical quantities, such as the distribution functions of the cell area and 
the number of edges of cells, and with the slow time evolution of cellular 
patterns. The knowledge of the motion of vertices gives complete 
knowledge of the motion of a cellular pattern in this model, with a greatly 
reduced number of variables. Furthermore, this model properly includes 
the two elementary processes of topological change mentioned above and 
is completely deterministic. The previous computer simulations for this 
type of model revealed a square root power law of the average linear size 
of cells and an indication of the existence of scaling behavior in the vertex 
model. (6'7) In the present paper, the scaling behavior will be well 
established and the asymptotic forms of the distribution functions will be 
determined with a high accuracy by simulating a system which is ten times 
larger than that of the previous simulations and repeating about 20 runs. 
Three versions of vertex models also will be compared. 

2. VERTEX M O D E L  

We briefly review the vertex model in this section, which consists of 
the equations of motion for vertices and the elementary processes for vertex 
collisions. ~9~ 

If the motion of cell boundaries is purely dissipative, the equation of 
motion for the ith vertex which has the position ri and the velocity vi is 
given by 

~o ~ 0~ 
+ ~ v  =0, i=  1, 2,..., N (2.1) 

#ri 

where ~ and ~ denote the free energy and the Rayleigh dissipation 
function, respectively, and N is the number of vertices. In systems with an 
interface, ~ and ~ can be generally expressed as follows: 

Y=-afda 

G 
= ~ f da v(a) 2 

(2.2) 
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where o is the line tension energy, L is the Onsager kinetic coefficient, and 
v(a) is the velocity of the interface along its normal direction at the 
position a on the interface. The integrations in Eqs. (2.2) are over all the 
interfaces. For the vertex model, Eqs. (2.2) become 

g = G Y,  Ir,jl 
<~> (2.3) 

= ~ IruI (vi" nij) 2 + ~ Irol (v," nD(v j" na) 
�9 . < / j >  

where r 0 - r ~ - r j  and n~ is the normal unit vector of the straight cell 
boundary segment ( i j ) .  Furthermore, the sum Z<0> is over all the 
connected vertex pairs ( 0 )  and the sum Z~ ~ over three vertices j which are 
connected to the vertex i. From Eqs. (2.1) and (2.3) we obtain the equation 
of motion for the ith vertex, 

1 ) _~( i )  r/j ~(0D0 v ,+~vj  = (2.4) 
j j Irijl 

where D~ is the tensor defined as 

1 
(D/j)~=~-~ ]ro.[ ~ Ft0.n ~, or, f l= x, y (2.5) 

Equation (2.4) describes that the vertex i moves under the action of 
the resultant of line tensions with o = 1 on the rhs in a medium with the 
friction coefficient Z~ ;) Dij if we neglect the term vj2  on the lhs. The term 
v j 2  gives rise to the correlation of the vertex with its neighbors j and hence 
will be called the correlation term in the following. 

It is expected that the equation of motion for vertex (2.4) 
approximately describes the grain growth and the evolution of soap froth. 
The difference of the vertex velocity given by Eq. (2.4) from those in the 
two cases has been examined in the special case of a symmetric cell having 
n sides. (9) The discrepancies in the velocities of vertices are within 10% for 
n ~> 5, about 25 % for n = 4, and about 100 % for n = 3. The large difference 
for n = 3 comes from the difference in the curvature of cell boundaries 
between the vertex model and the two real systems, which becomes largest 
for n = 3 .  

Equation (2.4) for the system composed of N vertices constitutes 
simultaneous equations with 2N unknowns for vertex velocities, since the 
equation for each vertex contains the velocities of its neighbors. It is 
impractical to solve it directly for large N. We are interested in the 
behavior of the system at the limit N ~  ~ .  Hence we need to reduce 
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Eq. (2.4) to a more tractable equation which still retains its essential 
features. 

We neglect all the anisotropy about the vertex i in question on the lhs 
of Eq. (2.4). That is, we average over all the directions of nzi and vj on the 
lhs in Eq. (2.4). Then we obtain what we have called the model II 
equation(9): 

1__ y(i) Ir~l vi = - ~(i) r~ (2.6) 
6L ~ j IruI 

This equation shows that the friction coefficient of a vertex is proportional 
to the sum of distances to its three neighbors and that the velocity of a 
vertex is not affected by the velocities of its neighbors. If we replace the 
bond lengths rr~i I by their average rB(t ) over the system on the lhs in 
Eq. (2.6), we then obtain what we have called the model I equation(9): 

re _ ~ i )  r~ (2.7) 
~-~ vi = J fro. [ 

Introducing a new time variable ~ in place of the physical time variable t 
according to 

e' 2L 
 :jor- d   2.8) 

we obtain that Eq. (2.7) reduces to 

dri_ ~(i) r~ (2.9) 
dr i [r~l 

Equation (2.9) is the simplest version of the vertex equation where the 
friction coefficient is constant if we regard v as a new time. 

The model equations I and II obtained above both retain the essential 
features from the viewpoint of dimensional analysis. The differences 
between the two model equations and the original one (2.4) with respect to 
topological aspects of the cell pattern will be examined in this paper. 

Our model equations of motion must be supplemented with the 
following two elementary processes of collision, which yield topological 
changes of the pattern: (i) Recombination process: when two vertices come 
within the small distance A, they are recombined as shown in Fig. la, 
provided that the edge between them belongs to none of the triangular 
cells. (i i)Triangular annihilation process: when any two of three vertices 
forming a triangular cell come within the distance A, the triangle is trans- 
formed into a single vertex at the midpoint between the two vertices as 
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(a) 

Fig. 1. 

(b) 

764 

Elementary collision processes: (a) recombination, (b) triangular annihilation. A 
denotes the vertex size. 

shown in Fig. lb. The length Lt is the spatial resolution in this 
coarse-grained model and will be called the vertex size. 

The above elementary processes are the same as those in soap froths 
and grain aggregates. They result in changes of the number of edges of cells 
and in turn affect the time evolution of each cell. Therefore it is important 
to carry them out precisely in the simulation. 

3. S I M U L A T I O N  M E T H O D  

We carry out computer simulations for the three versions of the vertex 
model, that is, the simplified models I and II and the original one, and 
compare their results. 
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Two kinds of cellular patterns are used for the initial distribution. One 
is the Voronoi cell network created by using an algorithm described in the 
Appendix and depicted in Fig. 2a. We choose the Voronoi cell network 
as the initial configuration to obtain all the simulation data which are 
analyzed in detail in this paper. Another cellular pattern is constructed as 

(a) 

(b) 
Fig. 2. Initial distributions used in the present simulations: (a) network of the Voronoi cells, 

(b) pattern created by using the algorithm described in Section 3. 
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follows: First, create a Voronoi cell network; then determine the center of 
gravity of each cell; lastly, construct a new cell network regarding those 
centers of gravity as new nuclei and using the algorithm for the Voronoi 
cell network. This is different from the first one in regard to nucleus 
configuration. The resulting pattern is shown in Fig. 2b. It is seen from 
Figs. 2a and 2b that the latter has more six-sided cells and the sizes of the 
cells are more homogeneous than the former. We study the latter in 
order to examine whether or not the late-stage patterns depend on initial 
configurations. 

Initially, the system consists of 48,000 vertices, i.e., 24,000 cells. This 
number of vertices is ten times as large as those of our previous 
simulations (6'7) and further 20 runs are carried out. These lead to better 
statistics and enable us to discuss the distributions of cell sizes and cell 
edges more definitely. 

We choose the quantities [4(0)]  1/2 and A(O)/L as the unit of length 
and the unit of time, respectively, where 4(0) is the initial average area of 
a cell. Our system has a rectangular form with a size about 141 x 170 in the 
new unit of length and is subjected to periodic boundary condition. We use 
the same notations (ri, vi, t) for the dimensionless quantities measured in 
the new units in this section. Then the model I equations (2.8) and (2.9) 
become 

dr,= _5-.~, ) r~j (3.1) 

where 

r = 2 fo dsrBl(s ) (3.2) 

The model II equation (2.6) is written as 

( 1 ~ (  0 )dr~ _ ~ ( 0  ru (3.3) 
6 j Ir~jl ~ - =  j [rijl 

Furthermore, the original model equation (2.4) is solved iteratively as 
follows. If vl ~ is assumed to be the solution which satisfies Eq. (2.4) 
without the correlation term �89 on the lhs then the solution vl n) obtained 
after n iterations is determined by 

~(~) Do vl") + 2 vj = ir0. [ , n >~ 1 (3.4) 
J J 

where 

(Oo.)~ ~ l r e  I ~ a = nijnij, ~, f i=x,  y (3.5) 
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The number n of iterations is taken to be the number which satisfies the 
following inequality at each time: 

max {(vl n l -  vl n- 1))2/(vln))2 } 1/2 < 10--3 (3.6) 
i 

We have adopted n = 20 in practice. The resulting vln)({rk}) can be used to 
find the following simultaneous differential equation for the original model: 

dri- vln)( {rk} ) (3.7) 
dt 

Three sets of simultaneous differential equations (3.1), (3.3), and (3.7) 
are numerically solved employing the Runge-Kutta-Gill  method. The step 
size in time employed in solving these equations is 0.01. The vertex size A 
is 0.01, 0.1, and 0.2 in model I, model II, and the original model, respec- 
tively. These values of the parameters are chosen in such a way that the 
displacement of any vertex does not exceed A in a single time step. 
Otherwise unphysical processes may occur, such as cell boundary crossing 
and long-lived oscillation of two vertices which are connected with each 
other by a short cell boundary whose length is of the order of but longer 
than A. Any value of A chosen above is such that it becomes mostly 
invisible in the patterns in the late stage. It is expected that A has no effect 
on the cell pattern in the late stage if A is much smaller than the average 
cell size. 

In practice, we need to introduce another elementary process besides 
the two elementary processes mentioned in the previous section. It takes 
place when two neighboring triangles annihilate simultaneously. In this 
case, we adopt the new process in which the two triangles vanish 
completely and then the two outer lines become a single line. 

4. S C A L I N G  B E H A V I O R  

We have executed the computer simulation by using the method men- 
tioned in the previous section, and we show typical growing patterns 
obtained for model II in Fig. 3. These figures show self-similar development 
of the pattern, and a resemblance of the patterns to those observed in grain 
aggregates and soap froths in two dimensions. In order to investigate the 
existence of the scaling behavior in the late stage, we examine the time 
dependences of the average cell sizes, the distribution function of the 
number of edges, and the distribution function of the cell size. 

First we study the growth law of the cell size. It is commonly accepted 
that the average cell size/~(t) grows a s / ~  t ~ in the late stage of growth, 
which is called the scaling regime. If the size distribution of cells has the 



scaling property, the square of/~(t) is proportional to the average cell area 
A(t). Thus, we examine the growth of A(t). As we have set the unit of 
length as A(0) = 1, the average cell area A(t) is written in terms of the total 
number of vertices N(t) as follows: 

A(t) = N(O)/N(t) (4.1) 

(a) 

(b) 
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Fig. 3. Time evolution of the patterns for model II with N(0)=48,000: (a) t=5.0,  
(b) t = 20,0, (c) t = 50.0. 
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(c) 
Fig. 3 (continued) 

In Fig. 4 we show the simulation results for A(t) in four cases, model I, 
model II, the original model, and the original model without the correla- 
tion term, which is obtained by neglecting the correlation term vH2 on the 
lhs in Eq. (2.4). Each result of A(t) is averaged over 10 runs in each case. 
For model I the time variable in Fig. 4 has been inversely transformed from 

to t with the use of Eq. (3.2). From this figure we can see that in each 
version A(t) grows linearly except in an initial transient regime. Therefore 
we obtain /~(t),-~ t 1/2 in the late stage. This result is easily understood 
by dimensional analysis of the equation of motion for vertices and agrees 
with those of the previous simulations. (6'7) The differences among the four 
versions result in different slopes of the linearity of A(t) with respect to t. 

We study this by studing how the correlation term affects the velocity 
of a vertex in the original model. We get the distribution function of the 
angle 0 between two velocities vi and v~, and the distribution function of 
the ratio of the absolute value of two velocities iv~i/ivil, where v~ and vi are 
the velocities of vertex i with and without the correlation term, respectively. 
The results are as follows. The average angle ( 0 )  is 0. The standard devia- 
tion of the angle 0 is about 0.2 rad. The average ratio (Iv;l/lvit) is about 
0.71. The standard deviation of this ratio is about 0.16. Thus, because of 
the smallness of the standard deviations, we can roughly consider that the 
correlation term does not affect the direction of the velocity and only 
changes the absolute value by 0.71 time. From this, we can understand the 
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Fig. 4. 
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Time dependence of the average cell area for model I (I), model II (II), the original 
model (O), and the original model without correlation term (O'). 
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Fig. 5. Time variation of the distribution function of the number of cell edges for model II 
with N(0)=  48,000, averaged over 20 runs at each time. 
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ratio 0.66 of the slope of A(t) between the original models with and 
without the correlation term (see Section 5.4). 

Next we examine the distribution function of the number of edges of 
a cell, which is denoted as f(n, t) for n-sided cells at time t. In Fig. 5 we 
show the time variation of f(n, t) for each n in model II, where the mean 
value of f(n, t) over 20 runs at each time are plotted and the sizes of 
statistical errors are shown by the vertical bars. We can say from this figure 
that after t-~ 5.0, f(n, t) becomes approximately stationary for each n. 
Model I and the original model also yield the same behavior o f f (n ,  t) after 
the nearly same time t ~ 5.0. In Fig. 5, the function f(n, t) seems to be 
oscillating with small amplitudes of the same order of magnitude as the 
statistical error. However, this oscillation is not essential, as will be dis- 
cussed below. We thus conclude that the distribution f(n, t) is independent 
of time t in the scaling regime and can be written as 

f(n, t )=f*(n)  (4.2) 

The small-amplitude oscillation of f(n, t) mentioned above can be 
attributed to the effect of the finite size of the system. To show this, we 
present in Fig. 6 the simulation data for f(n, t) obtained for two other 
cases, ( a ) N ( 0 ) = 4 8 0 0  and 20 runs, and ( b ) N ( 0 ) = 4 8 0 0  and 100 runs. 
Comparing the former result with that shown in Fig. 5, we see that the 
oscillation amplitude of f(n, t) and the size of the statistical error simul- 
taneously decrease with increasing system size. Furthermore, comparing 
the former result with the latter one, we find that the number of runs has 
the same effect on the oscillation and the statistical error as the system size. 
From this result, we conclude that the oscillation is a fluctuation effect 
which arises from the finiteness of the system size. 

Next we study how the scaling function f*(n) depends on the system 
size. In practice, we examine systems with N(0 )=  4800, 9600, 24,000, and 
48,000, and repeat 20, 10, 10, and 20 runs, respectively. The scaling 
function f*(n) is determined by averaging f(n, t) for t >~ 5.0 for each n. In 
Fig. 7 we show the graph of f*(n) vs. N(0) for model II. From this figure 
we can see that the function f*(n) does not depend sensitively on the 
system size. This fact indicates that the correlation of cellular pattern is not 
long-ranged. 

We examine the scaling behavior of the distribution of cell sizes 
g(R, t), in which the cell size R is defined by the square root of the cell 
area. In the scaling regime the function g(R, t) has the scaling property, 

g(R, t ) =  [-1//~(t)] g*(R/R(t)) (4.3) 



772 Nakashima e t  al. 
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(b) 
Time variation of the distribution function of the number of cell edges for model II 
with N(O) = 4800, averaged over (a) 20 runs and (b) 100 runs at each time. 
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Fig. 7. 
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System size dependence of the scaling function of the edge-number distribution for 
model II. The abscissa is the initial number of vertices. 

where g* is the scaling function. The function g* is plotted in Fig. 8 at 
several different times for model II. This result shows that g* is a function 
of the single variable R/R(t), as expressed in Eq. (4.3). 

Lastly, we have studied whether or not the scaling behavior depends 
on the initial cellular pattern. We have examined it for the two kinds of 
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initial patterns shown in Figs. 2a and 2b. We obtained the same scaling 
behaviors in both cases. The only difference between the two cases is that 
the transient time region for the second pattern shown in Fig. 2b is longer 
than that for the first pattern shown in Fig. 2a. This is because the size 
distribution and the edge number distribution of the second pattern are 
sharper than those of the first. 

5. A S Y M P T O T I C  BEHAVIOR IN THE SCALING REGIME 

In this section we discuss several statistical quantities of the patterns 
in the scaling regime and compare scaling behaviors of the three versions 
of the vertex models. 

5.1. Distr ibution of the Edge Number  and the Cell Size 

We have calculated the scaling functions for the distribution of the 
number of cell edges f*(n) defined by Eq. (4.2) and for that of cell sizes 
g*(R/R(t)) defined by Eq. (4.3) for each version of the vertex model. We 
plot the results for f *  in Fig. 9 and those for g* in Fig. 10. These results 
are obtained by averaging over 20 independent runs and also over the 
scaling time regime for each version of the vertex models. 

In each figure, the distribution becomes sharper gradually in the 
sequence of model I, model II, and the original model. The decrease of the 
distribution for small cells in this sequence can be understood by considering 
the shrinking rate of small cells. By comparing the friction coefficients 
of Eqs. (3.1), (3.3), and (3.7), we can say in a statistical sense that a cell 
with short sides shrinks faster in modelII  than in modelI  and in the 
original model than in model II. Taking account of the correlation between 
the size and the edge number of cells (see Section 5.3), we can say in the 
same sense that the distribution of few-sided cells decreases in the order of 
the models I, II, and the original. On the other hand, the decrease of the 
distribution for large cells in that sequence can be understood by considering 
the above-mentioned fact (i.e., the decrease for small size cells), and the 
correlation between the edge numbers of adjacent cells (see Section 5.2). 
The result for the correlation shown in Fig. 11 implies that a large cell has 
neighbors with small cell sizes on the average. Since the shrinking rate of 
a small cell becomes large in the same order of the model versions, the edge 
number of a large cell decreases faster on average in that order. Thus, the 
populations of cells with larger sizes or more edges may decrease in the 
same order. 
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Fig. 9. Scaling functions of the distribution of the number of cell edges for three versions of 
the vertex model. Crosses, model I; open circles, model II; solid circles, the original model. 

g 
1.0 

0.8 

0.6 

0.4 

0.2 

o.o ~ 
0.0 0.5 10 15 20 25 3.0 -R 

Fig. 10. Scaling function of the distribution of cell sizes for three versions of the vertex 
model. Thin line, model I; middle line, model II; thick line, the original model. 

822/57/3-4-23 



776 Nakashima et  aL 

5.2. Correlation of the Edge Numbers of Neighboring Cells 

The correlation between the edge numbers of adjacent cells is well 
known and is ~called the Aboav-Weaire  hypothesis. This hypothesis states 
that the average edge number mn of cells neighboring an n-sided cell is 
written as 

K 2 
mn = K 1  4 - - -  (5 .1)  

n 

where Kt and K2 are positive constants. Recently Rivier estimated these 
constants from the two elementary processes which are the same as ours, 
and found that Kt = 5 and K 2 = 6 + #2, where ~2 =Znf(n)(n-6)2. (t~ In 
Fig. 11 we plot our results observed in the scaling regime for each version 
of the vertex model. Equation (5.1) holds well in the vertex model except 
for small n (n < 4). The small discrepancy for small n is not yet understood. 
Hence we have calculated the coefficients K 1 and K2 from the data for n ~> 5 
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Fig. 11. Average number of edges of the first-neighbor cells adjacent to an n-sided cell mn(1 ) 
times n. Crosses, model I; open circles, model II; solid circles, the original model. 
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Table I. Coeff ic ients K 1 and K z 
in the Aboav -Wea i re  Hypothesis (5.1) ,  

and the Var iance of the Edge N u m b e r  Distr ibut ion 

K1 K2 /-/2 

Model I 5.23 7.71 3.40 
Model II 5.14 7.57 2.66 
Original model 4.91 7.80 1.29 

for each version of the vertex model, and tabulate these coefficients and the 
variances/~2 in Table I. Our results for the relation between the coefficient 
K2 and the variance #2 disagree with Rivier's estimation. 

Next, we have also examined the correlation of edge number between 
two cells separated by more than one cell. We denote the average edge 
number of the ith-neighbor cells adjacent to an n-sided cell by rn,(i), i.e., 
rn,,(1)=m,. In Fig. 12 we show our results for ran(i) for several values of 

mn(i) 
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&O ~ I 
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X ~ / i  =I 
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!.~"1 l r r i"q ] f II 

Fig. 12. Average number of edges of the ith-neighbor cells adjacent to an n-sided cell mn(i ) 
for model II. 
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i, as observed in the scaling regime for model II. From this figure one can 
see that the correlation length of edge number is very short, i.e., nearly 1. 
This is consistent with the results of the previous section that the edge 
number distribution function does not depend sensitively on the system 
size. In Fig. 12, m n ( i )  are larger than 6.0 for almost every n for the second 
neighbors ( i=  2) and for every n for the more than third neighbors (i~> 3). 
For i~> 2, m~( i )  takes an almost constant value for n/> 5, which is larger 
than 6.0 and decreases with increasing i. This arises from the large variance 
of edge number distribution and also from the fact that many-sided cells 
contribute many times to mn(i ) .  However, for larger i the contributions 
of many-sided cells are averaged out. Thus, m~( i )  approaches 6.0 with 
increasing i for every n. 

5.3. Correlat ion between the Edge Number  and the Cell Size 

It is known that a linear relationship exists between the average radius 
and the number of sides of a cell in a grain aggregate; this is called the 
perimeter hypothesis. ~1~ That is, the average radius or the average size Rn 
of n-sided cells is represented by 

R n / R  = c~(n - no) (5.2) 

where ~ and no are positive constants. In Fig. 13 we plot our simulation 
results for the average size/~n in the scaling regime for each version of the 
vertex model. From this figure we can see that there are discrepancies from 
the linear relationship for both cases with n = 3 and n > 8 for all versions 
of the vertex model. In particular, for n > 8 the average cell size of the 
veretex model bends downward from the linear behavior as n increases. 

Another relation, known as Lewis' hypothesis, states that the average 
area of n-sided cells is a linear function of its number of edges. That is, the 
average cell area -~n of n-sided cells is represented by 

A , / A  = t~(n - n 1 ) (5.3) 

where/~ and n I are constants. (1~ This relation was originally proposed for 
biological cell tissues and afterward also for two-dimensional soap froths. 
We show in Fig. 14 our results for the average areas of n-sided cells nor- 
malized by the average area of cells, in the scaling regime for each version 
of the vertex model. We can see from this figure that the relation (5.3) is 
violated in the region of few-sided cells (n < 5), while it is obeyed in the 
region of many-sided cells (n > 6). The violation of Lewis' hypothesis for 
few-sided cells has been reported experimentally in two-dimensional soap 
froths ~1) and also in some numerical simulations. ~11,~2~ 
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Fig. 13. Average radius of n-sided cells divided by the average radius of cells. All data are 
the mean values taken over 20 runs at t = 10.0 for each version of the vertex model. Crosses, 
model I; open circles, model II; solid circles, the original model. 

5 .4 .  R a t e  E q u a t i o n  f o r  t h e  A r e a  o f  a C e l l  

For  the vertex model  we now examine the von N e u m a n n - M u l l i n s  
equat ion,  which was derived for two-dimensional  soap froths (13) and  also 
for two-dimensional  grain aggregates. (a4) It states that  the growth rate of a 
cell depends solely on its n u m b e r  of sides. Tha t  is, the area A, of an n-sided 
cell varies according to the von  N e u m a n n - M u l l i n s  equat ion  

dA,= ~ ( n - 6 )  (5.4) 
dt 
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Fig. 14. Average area of n-sided cells divided by the average area of cells. All data are the 
mean values taken over 20 runs at t = 10.0 for each version of the vertex model. Crosses, 
model I; open circles, model II; solid circles, the original model. 

where K is a positive constant. This equation was derived from the 
following two assumptions: (1) curvature-driven interface dynamics where 
the velocity of a cell boundary is proportional to its mean curvature, and 
(2) the local equilibrium condition at the vertices that three cell boundaries 
meeting at a vertex form angles of 120 ~ 

On the other hand, the vertex model does not satisfy these assump- 
tions. However, this does not mean that Eq. (5.4) does not hold in the 
vertex model. It is a coarse-grained model in which vertices are replaced by 
effective ones with the finite size A, within the small region of which the 
local equilibrium condition is assumed to be satisfied by the original cell 
boundaries, and curved cell boundaries are replaced by straight effective 
ones with finite widths of order A. Thus, the constituents of the vertex 
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model, i.e., vertices and cell boundaries, are some averages of the original 
ones which retain only the minimal essentials. As a result, it is possible that 
the vertex model equation can include the effects of the two assumptions 
mentioned above implicitly and that Eq. (5.4) holds approximately on the 
average in the vertex model. In this case the parameter ~c in Eq. (5.4) 
should be altered to a renormalized one, since the vertex model has poorer 
resolutions of space and time than the original interface model. On the 
other hand, it has been observed experimentally that the yon Neumann-  
Mullins equation does not hold locally but statistically in two-dimensional 
soap froths. (1) Therefore, we examine below the growth rate of the average 
area /7 ,  of n-sided cells in the scaling regime for each version of the vertex 
model. 

Figure 15 shows the results for models I and II and the original model. 
In this figure we observe that the yon Neumann-Mullins equation 
approximately holds for many-sided cells (n > 6 for models I and II, and 
n > 4 for the original model), while it fails for few-sided cells (n < 5 for the 
models I and II, and n ~ 3 for the original model). The deviations of the 
vertex model from the yon Neumann Mullins equation for few-sided cells 
arise from the fact that the difference of the straight cell boundary assumed 
in the vertex model from the curved one increases with decreasing number 
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Fig. 15. Growth rates of the average area of n-sided cells. Crosses, modelI, open circles, 
model II; solid circles, the original model. 
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of cell sides. A recent analysis of two-dimensional soap froth experiments (2) 
has also shown deviations from the von Neumann Mullins equation, 
although the causes of deviations may not be the same. Further, we find 
that the growth rate for models I and II deviate upward from that of the 
original model for few-sided cells. This is due to the overestimation of the 
friction coefficient in the model I and model II equations. 

We consider a special symmetric case analytically to see the meaning 
of the approximation in each version of the vertex model. We consider a 
regular n-sided cell. One of the three cell boundaries of each vertex of the 
cell emerges outward radially and symmetrically, which will be called the 
outer lines, and is connected to an outer vertex which is assumed to be 
fixed. Such a special symmetric case has been analyzed for comparison 
between the vertex model and the curvature-driven models of grain 
aggregates and soap froths in our previous paper. (9) Each vertex moves 
along its outer line due to the symmetric configuration. In this case 
Eq. (2.4) yields the outward velocity of a vertex given by, in the same units 
as in Section 3, 

1 - 2 sin(re/n) 
v, - [-(2 + c)/3] a,  cos2(rc/n) (5.5) 

where an is the length of an edge of the cell and c = 0 if the correlation term 
(1/2) vj in Eq. (2.4) is neglected, while c = 1 if it is included. The latter 
corresponds to Eq. (4.22) in our previous paper. (9~ In this equation the 
numerator and the denominator come from the line tension and the friction 
coefficient, respectively. The outer line gives no contribution to the friction 
coefficient because only the edges having finite projections upon the 
direction perpendicular to the velocity of the vertex can contribute to it. It 
has been shown in our previous paper (9) that Eq. (5.5) reasonably well 
describes the results of the curvature-driven models in the special sym- 
metric case. 

In this case the time derivative of the area An of the cell is given by 

d A  ~ z~ 
- n v n a ~  cos - ~.o)  

d t  n 

Substituting Eq. (5.5) into Eq. (5.6), we obtain 

d A ,  3 1 - 2 sin(Tz/n) 
- -  n ( 5 . 7 )  

dt  2 + c cos(re/n) 

This equation implies that the growth rate of the cell area depends solely 
on its number of edges, but not on its edge length. In Fig. 16 we plot the 
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Fig. 16. Growth rate of the area of symmetric n-sided cells [solid line, c= 1; dashed line, 
c = 0 in Eq. (5.7)] and the average areas, where solid circles and crosses correspond to the 
vertex model with and without the correlation term, respectively. 

growth rate given by Eq. (5.7) for c = 1 by the solid line. The simulation 
results for the original model are plotted by the dots in the same figure. 
The agreement between them is excellent. This suggests that the special 
symmetric configuration of a cell considered above well describes the 
average behavior of the cell growth in the scaling regime. As seen in 
Fig. 16, Eq. (5.7) yields an approximate linear dependence of the growth 
rate on the number of cell edges for many-sided cells, as von Neumann-  
Mullins equation does. That is, expanding the rhs of Eq. (5.7) with respect 
to n, we have 

d A  n 3 rc 
- 2 + c ~ ( n - 6 )  for n,,~6 (5.8) 

dt  

3 
( n -  2~z) for n >> 1 (5.9) 

2 + c  

Equation (5.7) gives information on the effect of the correlation term 
(1/2)vj in Eq. (2.4). If the correlation term is neglected, i.e., c = 0  in 
Eq. (5.7), the growth rate of cell area becomes, in magnitude, 3/2 times as 
large as that in the case where it is included, while its n dependence is 
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unchanged. In Fig. 16 we plot the growth rate given by Eq. (5.7) for c = 0 
by the broken line. The simulation results for the original model without 
the correlation term is plotted by crosses in the same figure. Both are in 
good agreement, as in the case of c =  1. The correlation term is also 
neglected in models I and II. Their difference from the original model 
without the correlation term resides in the difference in the friction 
coefficient. In models I and II three cell boundaries connected to a vertex 
contribute to its friction irrespective of its moving direction. Hence, the 
outer line contributes to the friction in the present special symmetric case. 
This is an overestimation of the friction coefficient, as mentioned 
previously. As a result, the absolute values of the velocity Ivnl in these 
models are smaller than that in the case with e = 0 ,  and in turn the 
absolute values of the growth rate IdAn/dtl become small, as seen from 
Eq. (5.6). From this we can understand the behaviors of models I and II 
shown in Fig. 15, especially for n = 3 and n = 4. 

6. C O N C L U S I O N  

We have studied two-dimensional domain growth by using the vertex 
model. This model contains the least amount of information which still 
permits the two kinds of elementary processes. Thus, it has enabled us to 
study the behaviors at late stages for systems with a large numbers of cells, 
and to confirm the scaling behavior, that is, the growth as 1/2 power in 
time of the average cell size, and the scaling properties of the distribution 
functions of the size and edge numbers of cells. However, the distributions 
of the original vertex model are not similar to those of the Potts model. 
Perhaps one of the reasons for this deviations is the assumption that the 
cell boundaries are straight in vertex models. However, we do not have a 
clear understanding as to why and how this assumption effects the distribu- 
tion functions. 

We have also studied several versions of the vertex model by making 
simplifying approximations on the equations of motion for vertices, and 
compared their scalng behaviors to each other. All versions yield the 
1/2-power growth law for the average cell size. This is due to the fact that 
their equations of motion for vertices retain the same property with respect 
to dimensional analysis. On the other hand, distribution functions are 
different for each version and their differences arise from the differences in 
their friction coefficients. However, the correlations between the size and 
the edge number of a cell, the area and the edge number of a cell, and the 
edge numbers of neighboring cells are not so much different among 
different versions of the vertex model. This near absence of the differences 
is not fully understood. 
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Neither the perimeter hypothesis nor Lewis' hypothesis can be fitted 
on our simulation data over the whole observed range of the edge numbers 
of cells (from triangle to dodecagon) for the vertex model. The correlations 
of the edge number between neighboring cells are short-ranged in the 
vertex model. That is, the correlation is strong between nearest neighbors, 
while it approximately vanishes between more distant neighbors. The 
correlations between nearest neighbors are in accordance with the 
Aboav-Weaire hypothesis. 

The vertex model treats the elementary processes of topological 
change exactly, but treats the equations of motion of vertices 
approximately. When we study the original cellular dynamics, we must 
improve on this aspect more accurately. 

APPENDIX.  C O N S T R U C T I O N  OF THE 
V O R O N O I  CELL NETWORK 

The Voronoi cell network is usually constructed as follows. First, one 
scatters nuclei at random in the plane simultaneously. Then one considers 
that nuclei grow isotropically with equal rates. As the nuclei grow, the 
domains which grow from different nuclei collide with each other, and new 
boundaries emerge between those domains. The cellular pattern formed 
after all the domains have completed their growth is the Voronoi cell 
network, as exemplified in Fig. 2a. 

Now, from the method of construction mentioned above, we can see 
the following geometry of the Voronoi cell network. (1) The boundary is 
the perpendicular bisector of the straight line connecting two adjacent 
point nuclei. (2 )The  vertex which is the intersection of three boundaries is 
at equal distances from the point nuclei of three cells adjacent to the vertex, 
and there is no point nucleus within the circle passing through the three 
nuclei. 

We can create this random cellular pattern on a computer as follows 
(see Fig. 17). First, we consider the plane in which point nuclei are 
scattered at random. We construct a cell in a computer around its point 
nucleus P in counterclockwise manner. If another point nucleus Q is 
nearest to the point nucleus P, then the cells P and Q have a common 
boundary. Next we search for a vertex A which is one of the endpoints of 
this boundary, which is also adjacent to the cell of a third point nucleus R. 
Since the cell P is constructed in counterclockwise manner, it is enough to 
search a candidate for R among point nuclei whose angle e in Fig. 17 lies 
between 0 and ~. If we define the length h as in Fig. 17, then h has the 
smallest value for the point nucleus R and the vertex A which are chosen 
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Fig. 17. Construction of the Voronoi cell network. The crosses denote the point nuclei of 
respective cells. 

correctly. When we set the lengths P Q  = r and P R  = l, the length h is given 
by 

l -  r cos 
h = (A.1) 

2 sin a 

Consequently, the property of h mentioned above can be used in searching 
the correct point nucleus R and the corresponding vertex A. 

Repeating the same procedure where the point nucleus Q is replaced 
by the point nucleus R, we can find still another vertex belonging to the 
cell P. Further repetitions of this process complete the construction of the 
cell P. A similar procedure produces other cells of the Voronoi cell pattern. 
In actual programming, it takes about  40 sec of CPU time to generate 
24,000 cells on a FACOM M-780 computer. 
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